Use Low Flow
Breathing Technology
With Higher Confidence
Closed-circuit low flow anesthesia technology is fast becoming the preferred choice of medical professionals around the world because of its efficient use of anesthesia gases and the resulting cost savings. Yet low flow breathing procedures can also pose serious safety issues when the gases react with CO2 absorbents and degrade. Until now, that is.

Introducing Sodasorb LF, a new-generation CO2 absorbent from W.R. Grace, the recognized leader in CO2 absorption for nearly 90 years. Sodasorb LF is formulated specifically to eliminate the safety concerns associated with absorbents and low flow procedures, so you can concentrate on the patient, not the equipment.

Sodasorb LF:

The Solution to Your Changing Clinical Needs

Closed-circuit low flow anesthesia technology is fast becoming the preferred choice of medical professionals around the world because of its efficient use of anesthesia gases and the resulting cost savings. Yet low flow breathing procedures can also pose serious safety issues when the gases react with CO2 absorbents and degrade. Until now, that is.

Introducing Sodasorb LF, a new-generation CO2 absorbent from W.R. Grace, the recognized leader in CO2 absorption for nearly 90 years. Sodasorb LF is formulated specifically to eliminate the safety concerns associated with absorbents and low flow procedures, so you can concentrate on the patient, not the equipment.

Sodasorb LF Is Safety You Can Count On

Compound A. Carbon monoxide. Heat. Desiccation. If you work with general anesthesia, you know the dangers of these conditions, particularly at low flow rates. That’s why we’ve developed Sodasorb LF - to make these worries a thing of the past.

Sodasorb LF eliminates the safety concerns associated with absorbents used for low flow gas delivery, including toxic by-products caused by the degradation of anesthesia gases, such as Compound A and carbon monoxide. Both of these may be produced when anesthetic gases degrade with traditional CO2 absorbents, but not with Sodasorb LF. Sodasorb LF does not degrade anesthetic gases, and will not generate Compound A or carbon monoxide.

You’ll also appreciate the uniform pelletized shape of Sodasorb LF which results in reduced powdering, so everyone in the OR can breathe easier. The low dust design saves time and money, too - cleaner equipment needs less downtime for maintenance, and faster change outs mean more efficient and cost-effective operations.

A Permanent Color Change - The Color of Confidence

As Sodasorb LF is exhausted it changes color from off-white to violet but unlike traditional CO2 absorbents, once Sodasorb LF turns violet, it stays violet. Permanently. So you’ll never start a procedure only to discover it should have been changed out before you started. One look and you’ll know.

Sodasorb LF will also turn violet if it becomes desiccated, a unique safety feature. Desiccation impairs CO2 absorption, and with traditional CO2 absorbents, may also cause extreme and hazardous heat conditions and lead to the production of CO. But Sodasorb LF won’t heat up to extreme temperatures if it desiccates, LF won’t produce CO, and the violet color will tell you right away if it needs to be replaced.

Nearly 90 Years of Proven Performance

In the nearly 90 years since W.R. Grace became the first commercial producer of soda lime-based CO2 absorbent, Sodasorb has continued to lead the industry, responding to changing market needs with quality products, dependable performance and innovations like Sodasorb LF.

When you use Sodasorb LF you get the same proven performance and reliability that original Sodasorb has delivered for decades. Medical professionals around the world know they can trust Sodasorb. Now they can trust Sodasorb LF, too.
Sodasorb LF:
Performance and Specifications

How To Use It
Sodasorb LF must be properly packed into the absorbent canister for efficient removal of carbon dioxide. To avoid “channeling,” shake canister prior to use to insure that granules are not clumped together and that an even distribution fills the canister. A complex canister shape will make uniform distribution of the airflow through the absorbent difficult. Leave a small space at the top of the compartment to aid initial distribution of the airflow.

The canister wall should be transparent to permit visual inspection of the progressive exhaustion of the absorbent and the reaction of the ethyl violet indicator dye. Wall channeling will also be readily apparent, permitting repacking of the canister before inefficient absorption occurs.

Packaging
PrePak® - Pre-filled, disposable cartridges designed for easy insertion into compatible machines.
CanisterPak - Convenient, airtight foil-lined bags containing sufficient material to re-fill absorber canisters.
Plastic Jug - Bulk product fills reusable cartridges. Jugs are easy to open, pour and reseal.

Anesthetic Agents
Sodasorb LF may be used with all common anesthetic agents, including Sevoflurane, Desflurane, Isoflurane, Halothane, and Enflurane, in anesthesia machines found in ORs worldwide. Before using any other anesthetic agent, obtain approval from anesthetic manufacturer.

Absorption Efficiency
Sodasorb LF has all of the long-lasting efficiency you have come to expect from Sodasorb. Variables such as fresh gas flow rate, patient size and metabolic rate, Sodasorb packing density, and others may have an impact on absorptive capacity.

The Smart Choice In Absorbents